
Stabilizing bipedal walking on posts through multiple constraints

Kunishige Ohgane
Faculty of Mathematics, Kyushu University, Fukuoka 810-8586, Japan

Kei-Ichi Ueda
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

�Received 27 August 2009; revised manuscript received 5 February 2010; published 13 April 2010�

Adaptability of the human locomotion system has been studied from the theoretical viewpoint of dynamical
systems. The structure of a dynamical system consists of its time evolution rule, known simply as the dynam-
ics, and its constraints, such as the initial states or boundary conditions that determine future convergent states.
Initial state coordination by the system itself is the key to autonomous adaptive mechanisms. Exploring such
mechanisms, our previous studies have focused on the variables encoding the attractor basins, called global
variables. Global variables have been shown to enable the system to adapt to perturbations, by coordinating the
initial states �constraints� of the system. Thus, initial state coordination by the global variables has been
proposed as a mechanism for self-production of the constraints by a system. The adaptability of human
locomotion extends to active integration into its locomotion of the motion of environmental objects such as
walking on high-heeled shoes or on posts erected unstably. Dealing with bipedal walking on posts, this study
expands the mechanism for self-production of the constraints. This study proposes a multiple structure for
self-produced constraints and a framework for their description.
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I. INTRODUCTION

A feature of human locomotion is its adaptability to vari-
ous conditions affecting it. This adaptability is not limited to
passive avoidance of a perturbation such as a stumble �1�,
but also extends to active integration of environmental ob-
jects whose dynamics differs from that of the body. For ex-
ample, when humans walk on high-heeled shoes or unstable
posts �Fig. 1�a��, they are controlling the motion of environ-
mental objects, feeling as if the objects are part of their body.
How humans flexibly integrate environmental objects into
intended movement is an important problem for biological
cybernetics and the physiological and physical sciences that
deal with embodiment phenomena �2,3�. This study is di-
rected toward a theoretical understanding of the mechanisms
for integrating environmental objects into the generation of
locomotion. In particular, we investigate bipedal walking on
unstable posts.

In general, a dynamical system consists of its time evolu-
tion rule, known simply as the dynamics, and its constraints,
such as the initial states or boundary conditions that deter-
mine future convergent states. Modeling approaches using
dynamical systems theory have conventionally described the
human locomotion system by ordinary differential equations.
In such systems, the only constraints are the initial states.

One of the most important theoretical problems for adap-
tive mechanisms in biological systems is to clarify how the
system estimates its own state: estimates are described using
the system’s variables. In other words, how does the system
know whether it is in a walking state or a falling state? In �4�,
we carefully investigated the basin structure of the system
and found that the state of the whole system, that is, which
basin of attraction the whole system lies in, is reflected in
system variables referred to as global variables. In addition,
it was shown that the global variables enable the system to

move between the attractor basins by governing the initial
state or the posture at the beginning of stance phase �BSP�.
As a result, we constructed a model that can adapt to strong
external perturbations. The present paper focuses on such
mechanisms, that is, “constraint production by the dynamics
of system variables” or, more simply, self-production of con-
straints.

Until now, many studies modeling the adaptability of hu-
man walking have dealt with various types of perturbation to
the walking system, such as a load caused by sudden colli-
sion or a physical impairment �5–11�. When affected by such
perturbations, the solution of the system shifts out of the
attractor basin of the walking state. Adaptability to these per-
turbations is accomplished by returning the solution to the
attractor basin �9�. A mechanism for returning in a self-
constraining manner has been proposed �4�.

In this research, we model bipedal walking on unstable
posts in a self-constraining manner. Theoretically, the system
can maintain walking when a basin exists in the phase space
and when the initial state is placed inside that basin. From
a biomechanical viewpoint, the bipedal walking system
moves forward by repetitions of the stance phase. An un-
stable post destabilizes the stance phase and may easily
induce the system to fall �Fig. 1�b��. As the number of
posts increases, it becomes more difficult for the system to
maintain walking; the basin becomes more difficult to find,
and so it also becomes difficult to give an appropriate initial
state.

In order to construct a model described by a dynamical
system and to elucidate the adaptability mechanism of a sys-
tem walking on unstable posts, the following are essential
questions relating to the self-production of constraints.

�Q1� Can we explicitly describe a constraint unifying the
body system and posts using the variables of the body sys-
tem and post?
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�Q2� Does the system constrained by the equation found
in �Q1� have a walking state basin of attraction with a similar
structure to that of the system walking on flat terrain? In
other words, can the system walking on unstable posts esti-
mate the system’s state using the global variables?

�Q3� Is the adaptability of the system improved by gov-
erning the initial state through global variables?

In this article, we show that the existence of two con-
straints, that is, the constraint unifying the body system and
posts, and the constraint by global variables, enables the sys-
tem to walk on unstable posts and improves the system’s
performance. We consider �Q1� and �Q2� in Sec. IV, and
�Q3� in Sec. V.

II. MODEL

The model is composed of a walking system and posts
erected in the ground. The walking system used here is the

same as that described in a previous study �4�, and consists
of neural and body systems. The motion of the body is rep-
resented by second order differential equations of a vector
�x1 , . . . ,x6� describing five links �Fig. 1�a��: x1 �m� and x2
�m� represents the position of the hip joint in x axis and y
axis, respectively; x3 �rad� and x4 �rad� �x5 �rad� and x6 �rad��
represent the angles of the left �right� thigh and shank with
respect to the vertical, respectively. The equations are ex-
pressed according to the Newton-Euler method. The posts
are modeled as rigid bodies. The weight and length of the
body segments are arbitrarily set based on an adult male. The
amplitude of the torques, which modulates the hip and knee
joint angles, is restricted to a realistic level �see �4� and �12��.

Each post can revolve in the x-y plane about its bottom tip
that is fixed into the ground. Against the revolution of a post,
there is a small viscoelastic resistance. The interaction be-
tween the walking system and posts is assumed to be the
following. Initially, all the posts are vertical. When the leg
tip �representing the ankle joint� of the walking system con-
tacts the upper surface of a post, sufficient viscoelastic force
occurs at the contact point such that the leg tip does not slip.
In this study, no active torque is produced at the leg tip, that
is, Tr3=Tr6=0 �see the Appendix in �4� for the notation�.
Therefore, the walking system acts on the posts by placing
the leg tip on the upper surface of the posts. By controlling
the placement position, the system can govern the dynamics
of the posts. The control of foot placement is executed by
modulating the posture at BSP �4�. The dynamics of the
angle of the i-th post relative to the vertical axis, �i �rad�, is
described by

I�̈i = − Fy� sin �i + Fx� cos �i − b�̇i − k�i −
2

3
mgl sin �i,

where a dot indicates the derivative with respect to time,
�i=�i�t� �rad� is the angle between the line connecting the
tip of the leg to the rotating center of the post and the vertical
axis, �=��t� �m� is distance from the bottom tip of the post
to the tip of the leg �foot�, Fx �N� and Fy �N� denote friction
and normal force, I is the moment of inertia, b and k are the
coefficients of viscosity and elasticity against revolution of
the post on its supporting points, and m and g are the mass of
the post and the acceleration due to gravity. Here, each of the
parameter values is set to be the same for all posts: the width
of the upper surface of the post d is 0.2 �m�, the height of the
post l is 0.5 �m�, m=3.0 �kg�, k=100.0 �N /m2�, and g
=9.8 �m /s2�. The viscosity of post revolution is set to b
=70 �N·m·s�. It is assumed that there is no interaction be-
tween the posts. The position of i-th post is denoted by
�Xi ,−l� �i=1,2 ,¯�.

III. BASIN STRUCTURE

First, we consider the dynamics of the system walking on
flat terrain. In a previous study �4�, the posture at BSP, re-
ferred to as the “initial state,” is crucial for the successful
generation of the following step. We find a criterion that
determines whether the system proceeds to the walking state
or falling state by taking an appropriate Poincaré section at
the initial states. In order to do this, we need to generate
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FIG. 1. Schematic of the numerical experiments. �a� The vari-
able � is defined as the angle between the two lines connecting the
hip joint to the left tip and the hip joint to the right tip. �b� The post
revolves on its bottom tip that is fixed in the ground, when the
walking system places the leg tip somewhere on the post. If the
walking system moves separately from the post motion, this results
in failure to walk. �c� Integration of post motion into the system
motion requires some constraints between them. Xi is the position
of the supporting point of the i-th post, and pi is the foot position at
BSP.
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various initial states, which are done by adding a small per-
turbation to the left leg in the swing phase. The perturbations
are given by

Fj = F/���F1�2 + ��F3�2 + ��F4�2 � �Fj ,

j = 1,3,4, F = �50,51, . . . ,90� ,

where F1, F3, and F4 are external forces applied to the hip
joint �x1�, the hip joint angle �x3�, and the knee joint angle
�x4�, respectively. These perturbations vary the walking ve-
locity, and the angle of the hip and knee joints at BSP. A
positive F1 increases walking velocity, while positive F3 and
F4 decreases the hip joint angle and the knee joint angle,
respectively. The details of the equations for external pertur-
bations are described in the Appendix in �4�. The values of
�F1, �F3, and �F4 are selected randomly from −0.1 to 0.1
and the perturbation is applied to each joint for 0.1 s. The
sample size for each F is 200, giving a total sample size of
8200.

In Fig. 2�a�, a band of the stable walking regime can be
observed by projecting the initial states �BSP� onto �z1 ,��
space, where z1ªdx1 /dt. The variable ��t� is a global angle
defined by

��t� ª �l�t� − �r�t� ,

where

�l�t� = tan−1� l1 sin x3�t� + l2 sin x4�t�
l1 cos x3�t� + l2 cos x4�t�	 ,

�r�t� = tan−1� l1 sin x5�t� + l2 sin x6�t�
l1 cos x5�t� + l2 cos x6�t�	 ,

�see Fig. 1�a��. The three phases are clearly separated, with
little overlap between them. In other words, the basin of
attraction of walking states is isolated from the falling state.
This means that we can check whether the system will fall or
not by checking whether the variable set �z1 ,�� is in the
basin of attraction; that is, the relationship between z1 and �
can constrain the final state of the system. When the initial
states are projected on �z1 ,x3� space, such criterion is not
found. When the initial states are projected onto �z1 ,x4�
space, a band of the stable walking regime can be seen.
However, the two regimes are not clearly separated, so the
final state of the system cannot be determined by x4 and z1.
These numerical results indicate that the type of solution is
not determined by �x3 ,z1� or �x4 ,z1� at BSP �Fig. 2�c�� but
that z1 and � are special variables for the system. We refer to
z1 and �, which encode the basins, as global variables.

A study of bipedal walking on flat terrain �4� has shown
that coordination of the global angle � by z1 can constrain
the system into the walking state against various perturba-
tions. The crucial role of z1 in controlling the walking system
is also seen in the present results. The constraint imposed
between the dynamics of z1 and � is discussed in Sec. V.

IV. CONSTRAINT FOR WALKING ON POSTS

Next we consider the system walking on the posts. From
a mechanical viewpoint, we expect that placing the leg tip on

the post easily starts the post revolving, which leads to ac-
celeration of the leg tip position. This acceleration makes it
extremely difficult to produce the inverted pendulum motion,
which is the basis for the generation of bipedal walking.
Thus, walking is structurally destabilized on unstable posts.
If no constraint between the dynamics of body and that of
posts is given, the system cannot maintain walking on posts.
In fact, when Xi �i=1,2 , . . . ,� are given randomly satisfying

Xi− pi
�0.01 at every step �see Fig. 1�c��, the system falls
down within about 10 steps.

We show that the system can control angular velocity and
acceleration of the post by controlling foot position on the
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FIG. 2. Response of the system to perturbations when the sys-
tem walks on flat terrain. Black and gray points indicate the initial
data for which the system finally walks and fails to walk, respec-
tively. The initial states are projected onto z1-� space ��a��, z1-x3

space ��b��, and z1-x4 space ��c��.
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foothold depending on the body variables, and such control
enables the system to maintain walking. That is, stable walk-
ing is established by constraining the system variable �or the
position of foothold� by system variables. In addition, we
show that a basin structure similar to that shown in Fig. 2�a�
appears by restricting the solution orbit to an appropriate
subspace. Such restriction corresponds to regarding the
walking system and the post system as a unified system.

Walking on unstable posts is stabilized by unifying the
dynamics of the body and the posts. Let us consider a situa-
tion in which the system walks to the right and the left leg is
in the swing phase. The body system falls forward faster as
the knee joint angle of the left leg at the BSP decreases
because the horizontal position of the center of mass of the
left leg decreases as the knee joint angle decreases. In order
to stabilize the walking on the posts, the post should revolve
in accordance with the walking speed; the revolving speed
should be increased �decreased� as the walking speed is in-
creased �decreased�. Since the position of the center of mass
of the left leg at the BSP heavily depends on sin x4 and the
revolving speed of the post is controlled by the foot position
of the left leg at BSP, pi, we assume a constraint between
sin x4 and Xi− pi. The same argument is valid for the right
leg. Thus, we assume the constraint

Xi − pi = 	 sin x̃k, �1�

where k=4 �k=6� for the left �right� leg, and Xi− pi is dis-
tance of the foot position from the central point of the sur-
face of the post. The variables x̃4 and x̃6 are x4 and x6 at BSP,
respectively �Fig. 1�c��, and 	�R is the control parameter.
According to Eq. �1� the system needs to set the angle of the
hip and knee joints during the swing phase such that the
values of x̃4 �x̃6� and pi at every BSP satisfy Eq. �1�. How-
ever, since such control is quite difficult in numerical experi-
ments, we employ an alternative setting in which the position
of a post Xi �i=1,2 , . . . ,� is not determined at t=0 but at each
BSP. That is, Xi is given depending on x̃4 �x̃6� and pi at the
moment the height of the leg tip from the surface becomes 0.
The advantage of this experimental setting is that we can
precisely specify Xi− pi satisfying �1� in numerical simula-
tions. We refer to the constraint in Eq. �1� as “constraint I.”

In order to determine the effectiveness of constraint I nu-
merically, the following experimental procedure was used.
First, the system walks on flat terrain until step number Is,
which is taken to be large enough that the walking behavior
converges to the limit cycle. Next, the system walks on the
posts from step �Is+1� to step Ie. The system then walks
again on flat terrain from step �Ie+1�. Here, we fix Is=13 and
Ie− Is=50.

The experimental results show that the system behavior
depends critically on 	. Figure 3 shows the step number that
the system walking on posts achieves for various values of 	.
For 	
0 and 	�0.5, the system falls within 10 steps. This
indicates that constraint I is crucial to maintain walking on
posts.

In order to investigate basin structure of the unified sys-
tem, we execute numerical experiments �similar to those
conducted for flat terrain� to find the basin structure in the
subspace defined by Eq. �1�. Small perturbations F1, F3, and

F4 are applied during the swing phase between steps Is
and �Is+1�. As for walking on flat terrain, we take �F1 ,
�F4� �−0.1,0.1� but now we take �F3� �−0.01,0.01�. An
isolated band of walking states clearly appears when initial
states are projected onto �z1 ,�� space �Fig. 4�a��.

It should be noted that the isolated basin for the system
walking on posts is found by reducing the range of �F3 from
�−0.1,0.1� to �−0.01,0.01�. When the range of �F3 is taken
to be same as that for the case of flat terrain, a lot of falling
states are interspersed in the band pattern of walking states
�Fig. 4�b��. This indicates that the basin becomes thinner
along x3 axis. Therefore, strong variability of the hip joint
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FIG. 3. Step number that the system walking on posts achieves
for given 	. The maximum step number is 50 since Ie− Is=50.
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FIG. 4. Response of the system to perturbations when the
system walks on the posts for �a� �F1 ,�F4� �−0.1,0.1� and �F3
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angle during the swing phase induces falling. This finding is
useful for constructing the adaptability function discussed in
Sec. V.

This series of numerical experiments shows that con-
straint I enables the unified system to establish inverted pen-
dulum motion and generate walking. That is, in phase space,
the solution orbit of the system can be enclosed in the attrac-
tor basin of the walking state by constraint I. In addition, it
was found that the unified system can estimate its state using
the global variables z1 and �.

V. CONSTRAINT FOR EXTERNAL PERTURBATIONS

In real life cases of the integration of environmental ob-
jects into locomotion, such as walking on stilts, the inte-
grated locomotion system adapts to external perturbations. In
order to reproduce such adaptability, we improve the unified
system induced by constraint I and show that a constraint
between global variables expands the basin of stable walk-
ing.

Control of the leg tip position on a post, or posture for-
mation at BSP, requires modulation of the joint angle of the
hip or knee during the swing phase. Since modulation of the
hip joint angle during walking on the posts easily causes
falling, as described above, the hip joint torque should not be
greatly varied when the system is affected by external per-
turbations. Therefore, we assume that when the system is
affected by external perturbations, the system modulates pos-
ture by altering the knee joint angles. Thus, � at BSP is
controlled by modulating the knee joint angles

�k�t� = �̄k + 	 fg�z1�t� − z̄1� + 	bg�z̄1 − z1�t�� , �2�

where g�z�=z for z
0 and g�z�=0 otherwise, �̄k is a basal
angle and is set to 0.13� �rad�, z̄1=0.95 �m /s� is set close to
the average speed, 	 f =−0.3, and 	b=0.2. The function in Eq.
�2� is constructed so that the posture at BSP can approach the
band pattern shown in Fig. 4�a�; when z1
 z̄1, the global
angle � for the leg in the swing phase is reduced through Eq.
�2� and vice versa for z1� z̄1. We refer to Eq. �2� as “con-
straint II.”

In order to test the effectiveness of constraint II, a hori-
zontal external perturbation F1 is applied to the hip position
from the 15th step. This may resemble the situation when a
walking human is buffeted by wind. The system including
Eq. �2� can maintain walking for at least 50 steps for F1 from
−14 �N� to 13 �N�, while the system without Eq. �2� can
adapt only for F1 from −9 �N� to 4 �N�. These results show
that constraint II improves the system’s performance in the
presence of perturbations. Theoretically, constraint II enables
the solution of the system to be returned to the attractor basin
in the restricted subspace.

Finally, we remark that the system with constraint II but
without constraint I cannot maintain walking on posts. In
fact, when the position of a post Xi is given randomly satis-
fying 
Xi− pi
�0.01 ignoring constraint I, the system main-
tains walking for less than 10 steps on average. This indi-
cates that constraint I is indispensable for maintaining
walking on posts. In addition the greater adaptability against

external perturbations occurs only when constraint I is used.
In other words, the walking system can adapt to external
perturbations by using multiple constraints: constraint I
should be complemented by constraint II.

VI. DISCUSSION

We have described a coordinate system that consistently
reveals the basin structure of a walking system before and
after importation of environmental objects. The future of the
walking system is constrained by the coordinate variable z1
and global angle �, even if environmental objects are im-
ported. It was found that two constraints are necessary to
establish walking on environmental objects in the presence
of perturbations. �i� Constraint I encloses the solution orbit
of the system in the attractor basin of the walking state; this
corresponds to a unification of walking system behavior and
environmental object motion. �ii� Constraint II expands the
basin, which returns the solution previously shifted outside
by perturbations back to the basin; this corresponds to the
unified system’s adaptation to external perturbations. Thus,
for the integration of the environmental objects into the sys-
tem, self-production of constraints is attained by two hierar-
chical processes.

One interesting observation is that the band pattern also
appears by projecting the initial states onto z1-�� space in-
stead of z1-� space, where �� is defined by the position of
the vertex and the boundary of the whole system: ���t�
=tan−1�x1�t�−Xi /x2�t�+ l�−tan−1�x1�t�−Xi−1 /x2�t�+ l� �Fig.
5�. This also indicates that the whole system including
the posts can be regarded as a bipedal locomotion sys-
tem that has a basin structure similar to the system
walking on flat terrain. This also implies that, if the body
system can sense the position of the tip of post as if
the post were a segment of the body system, the whole
system can control its behavior similar to the way that
the system walking on flat terrain does. We also remark
that the overlap between the walking region and the
falling region in z1-�� space seems to be less than that
in z1-� space, which indicates that �� may be more suitable

ϕ’
(r
ad
)a
tB
SP

z (m/s) at BSP1

0.6

-0.1
0.75 1.25

ϕ’ supporting point

(X , -l )i−1 (X , -l )i (X , -l )i+1

(x , x )1 2

FIG. 5. Response of the system to perturbations when the
system walks on the posts for �F1 ,�F4� �−0.1,0.1� and �F3
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than � as a global variable that determines the system’s
convergent state. It is important, from a descriptive view-
point, that the constraints proposed here are given in terms
of variables expressing the global state of the whole sys-
tem: z1 is the velocity of the whole system, and �� is defined
by the position of the vertex and the boundary of the whole
system. We expect that the self-production of constraints,
established by variables expressing the global state of the
whole system, is a key mechanism in embodiment phenom-
ena.
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